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The cross-correlation function between two response measurements made on an
ambiently excited structure is shown to have the same form as the system’s impulse response
function. Therefore, standard time domain curve-fitting procedures, which are typically
applied to impulse response functions, can now be applied to the cross-correlation functions
to estimate the resonant frequencies and modal damping of the structure. This derivation
is based on the assumption that the ambient vibration source is a white noise random
process. Curve-fitting cross-correlation functions to obtain modal properties offers
advantages over standard procedures that identify resonant frequencies from peaks in the
power spectrum and damping from the width of the power spectrum. The primary
advantage is the ability to identify closely spaced modes and their associated damping. The
resonant frequencies of a highway bridge that were identified by curve-fitting the
cross-correlation functions, using traffic excitation as the ambient vibration source, are
compared to modal properties identified by standard forced vibration testing methods.
Results of this comparison showed a maximum discrepancy of 3·63 percent. Similar
comparisons for the average modal damping values identified by the two methods showed
a 9·82 percent difference. This experimental verification implies that the proposed method
of analyzing ambient vibration data can be used to accurately assess the dynamic properties
of structures in a non-intrusive manner.
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1. INTRODUCTION

For both newly constructed bridges and for older existing bridges, it is desirable to measure
the dynamic properties (resonant frequencies, mode shapes and modal damping) of the
bridges to understand better their dynamic behavior under normal traffic loads as well as
extreme loads such as those caused by seismic events or high winds. These measured
properties can be used to update numerical models of the bridge so that these models better
reflect the in situ boundary conditions and as-built structural connectivity. Also, periodic
monitoring of the dynamic properties is being studied for possible use as a method to assess
degradation in the structural integrity of the bridge. Under normal operating conditions,
knowledge of the dynamic properties can be used to assess the effects of traffic loading
on the fatigue life of the structure and to determine dynamic load factors for these
structures.

Typically in vibration testing, analytical forms of frequency response functions (FRF)
relating a measured input, usually force, to a measured response such as acceleration are
fit to measured FRFs to estimate the dynamic properties of a structure. The use of
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measured input-measured response FRFs to identify a structure’s dynamic properties is
well documented in the technical literature [1]. However, when a bridge is subjected to
traffic excitation, it is difficult, if not impossible, to measure the input to the structure. The
extension of system identification methods to ambient vibration cases, in which an input
cannot be measured, has received considerably less attention in the technical literature.
However, the size of most bridges and the disruption of traffic flow if they are taken out
of service typically makes ambient vibration testing the only practical experimental method
available for studying their dynamic response.

One of the earliest attempts fully to characterize the dynamic parameters of bridges
undergoing ambient vibrations was reported by McLamore, Hart and Stubbs [2], using
an extension of a spectral technique developed by Crawford and Ward [3]. In this work,
the recorded motion of the bridge was measured with a series of accelerometers.
Frequencies associated with peaks in the power spectral density function (PSD) of each
recorded motion provided estimates of resonant frequencies. The half-power bandwidth
method (HPBW) was used to estimate the modal damping associated with these peaks.
Amplitude and phase information contained in cross-power spectra (CPS) between a
designated reference measurement and the other measurements provided estimates of
mode shapes. This method of system identification from ambient response measurements
has been summarized more recently by Bendat and Piersol [4]. Following this earlier work,
numerous ambient vibration tests, most of which analyze the response measurements in
a manner similar to that presented by McLamore, Hart and Stubbs, have been reported.
These ambient bridge tests are summarized in references [5–23]. Drawbacks of the system
identification methods used in these studies, which have been previously identified by
Abdel Gaffar and Housner [5], are the need for very high frequency resolution (the
necessary resolution has been quantified in reference [4]) around the resonance to
adequately define the half-power points and the difficulties in identifying closely spaced
modes because of spectral overlap.

Other methods of extracting modal parameters from ambient vibration data have made
use of averaged, normalized PSDs to estimate the resonant frequencies. A modal ratio
function that weights the frequency response function magnitude and phase information
between a designated reference measurement and other measurements with a discrete
binary function derived from the coherence function is then used to estimate modal
amplitudes and phases [24–27]. This method also suffers from the difficulties associated
with closely spaced modes discussed above. Autoregressive moving average models [28],
random decrement analysis [29], and time–frequency analysis methods [30] have also been
applied to ambient vibration system identification [29], and a direct comparison of these
methods is presented in reference [31]. However, these methods require the development
of algorithms not typically implemented in most data acquisition and analysis software.

In this paper an ambient vibration system identification method, referred to as the
Natural Excitation Technique (NExT) [32, 33], is presented, which circumvents the
drawbacks of the methods previously discussed and can be implemented through
algorithms found in almost all commercial signal analysis software packages. The NExT
method essentially involves applying time domain curve-fitting algorithms to
cross-correlation measurements made between various response measurements on an
ambiently excited structure to estimate the resonant frequencies and modal damping. To
justify such a system identification procedure, it must be shown that for an input,
which is not measured but assumed to be white noise, the cross-correlation
function between two response measurements is the sum of decaying sinusoids and
these decaying sinusoids have the same damped resonant frequencies and damping ratios
as the modes of the system. This result implies the cross-correlation functions will have
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the same form as the system’s impulse resonse function. Therefore, time domain
curve-fitting algorithms such as the polyreference method [34], the complex exponential
method [35] or the eigensystem realization algorithm [36], which were developed to
analyze impulse response functions, can be applied to the cross-correlation functions to
obtain the resonant frequencies and modal damping exhibited by the structure.

The polyreference method, the complex exponential curve-fitting method and the
eigensystem realization algorithm are classified as multi-degree-of-freedom methods,
because they attempt to simultaneously identify all modes within a given frequency range
and to compensate for the influence of out-of-band modes. Therefore, these curve-fitting
methods account for the spectral overlap that has caused problems for the methods used
in previous studies. The proposed method has the ability to identify dynamic properties
associated with closely spaced modes. Mode shapes are again determined from magnitudes
and phases in the CPS at the identified resonant frequencies. The method is demonstrated
by analyzing ambient traffic-induced vibration data from a 130 m (425 ft) section of a
highway bridge, and results are compared to dynamic properties identified from
conventional forced vibration tests conducted after traffic was removed from the bridge.

2. BASIS OF THE ANALYSIS METHOD

For an n-degree-of-freedom system, the equations of motion can be represented in
matrix form as

[m]{ẍ(t)}+[c]{ẋ(t)}+[k]{x(t)}= { f (t)}, (1)

where [m] is the n× n mass matrix, [c] is the n× n damping matrix, [k] is the n× n stiffness
matrix, {ẍ(t)} is the n×1 acceleration vector, {ẋ(t)} is the n×1 velocity vector, {x(t)}
is the n×1 displacement vector, and { f (t)} is the n×1 applied force vector.

When proportional damping is assumed and equation (1) is transformed into modal
co-ordinates, a set of uncoupled scalar equations of the following form results:

q̈r +2zrvr
nq̇r +(vr

n)2qr =
1
mr {fr}T{ f (t)}, (2)

where the superscript r denotes values associated with the rth mode, q, q̇ and q̈ are the
displacement, velocity and acceleration in modal co-ordinates, f is the mode shape vector,
vn is the natural frequency, and m is the modal mass. These equations may be solved by
the convolution integral, assuming a general forcing function and zero initial condition,
and back-transformed into the original co-ordinates, yielding

{x}= s
n

r=1

{fr}T g
t

−a

{fr}T{ f (t)gr(t− t) dt, (3)

where gr(t)= (1/mrvr
d) e−zrvr

nt sin (vr
dt) is the impulse response function associated with

mode r, vr
d is the damped natural frequency associated with mode r and n is the number

of modes.
The response at location i caused by an input at location k, xik and fk (t), respectively,

can be expressed as

xik = s
n

r=1

fr
if

r
k g

t

−a

fk (t)gr(t− t) dt, (4)

where fr
i is the ith component of the mode shape vector.
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If f (t) is a Dirac delta function at t=0, then the response at location i resulting from
the impulse at location k is

xik = s
n

r=1

fr
if

r
k

mrvr
d
e−zrvr

nt sin (vr
dt). (5)

The cross-correlation function Rijk (t) relating two measured responses at locations i and
j caused by a white noise random input at k is given by Bendat and Pierson [4] as

Rijk (T)=E{xik (t+T)xjk (t)}, (6)

where E{} indicates the expectation operator.
Substituting equation (4) into equation (6) and noting that fk (t) is the only random

variable yields

Rijk (T)= s
n

r=1

s
n

s=1

fr
if

r
kf

s
jf

s
k g

t

−a g
t+T

−a

gr(t+T− s)gs(t− t)E{ fk (s)fk (t)} ds dt. (7)

On the basis of the assumption that f (t) is a white noise function, and using the definition
of the autocorrelation function given in reference [4], the following relationship can be
established for the autocorrelation function of f:

E{ fk (s) fk (t)}= akd(t− s), (8)

where ak is a constant and d(t) is the Dirac delta function.
Substituting equation (8) into equation (7) and changing the variable of integration to

l= t− t yields

Rijk (T)= s
n

r=1

s
n

s=1

akf
r
if

r
kf

s
jf

s
k g

a

0

gr(l+T)gs(l) dl. (9)

From the previous definition of gr and the trigonometric identity for the sine of a sum,
gr(l+T) can be expressed with terms involving T separated from those involving l,
resulting in

gr(l+T)= [e−zrvr
nT cos (vr

dT)]
e−zrvr

nl sin (vr
dl)

mrvr
d

+[e−zrvr
nT sin (vr

dT)]
e−zrvr

nl cos (vr
dl)

mrvr
d

. (10)

When equation (10) is substituted into equation (9) along with the corresponding term for
gs(l), the terms involving T can be factored out of the integral and the summation on s
yields the following form for the cross-correlation function:

Rijk (T)= s
n

r=1

Gr
ijk [e−zrvr

nT cos (vr
dT)]+Hr

ijk [e−zrvr
nT sin (vr

dT)], (11)

where

6Gr
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cos (vr

dl)7 dl. (12)
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From equations (11) and (12), it is evident that the cross-correlation functions
between two response measurements that result from an unknown white noise excitation
have the form of decaying sinusoids, and these decaying sinusoids have the same
characteristics as the system’s impulse response function. Therefore time domain system
identification techniques, which are typically applied to impulse response functions,
can be applied to these cross-correlation functions to estimate the system’s
resonant frequencies and modal damping values. This derivation is based on those
summarized in references [32, 33]. The ambient vibration system identification method is
now applied to ambient vibration data from traffic excitation obtained on a highway
bridge.

When implemented in practice, the cross-power spectrum is first estimated and then
inverse Fourier transformed to obtain the cross-correlation function. Therefore, this
method will be subject to window-dependent resolution bias errors as discussed in reference
[37]. These errors also influence standard curve-fitting procedures that are applied to
measured-input frequency response functions. As with frequency response function
estimates, random errors associated with the cross-power spectrum can be minimized by
averaging numerous measurement samples [4]. The effects of bias error sources were not
investigated in this study. Measurement averaging was employed to minimize the random
error sources.

3. TEST STRUCTURE

The former I-40 bridge over the Rio Grande (this structure was replaced in 1993)
consisted of twin spans made up of a concrete deck supported by two welded steel
plate girders and three steel stringers. Loads from the stringers were transferred to the
plate girders by floor beams located at approximately 6·1 m (20 ft) intervals. Cross-bracing
was provided between the floor beams. Each span carried three lanes of traffic
under normal operating conditions. In Figure 1 is shown an elevation view of the
portion of the bridge that was tested. The cross-section geometry of the bridge is shown
in Figure 2.

Each bridge was made up of three identical sections. Except for the common pier located
at the end of each section, the sections are independent. A section had three spans; the
end spans are of equal length, approximately 39·9 m (131 ft), and the center span was
approximately 49·7 m (163 ft) long. Five plate girders were connected with four bolted
splices to form a continuous beam over the three spans. The portions of the plate girders
over the piers had increased flange dimensions, compared with the mid-span portions, to
resist the higher bending stresses at these locations. Connections that allowed for

Figure 1. An elevation view of the portion of the eastbound bridge that was tested.
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Figure 2. A typical cross-section geometry of the bridge: drawing not to scale.

longitudinal thermal expansion, labeled ‘‘exp’’ in Figure 1, as well as a connection that
prevented longitudinal translation, labeled ‘‘pinned’’ in Figure 1, were located at the base
of each plate girder, where the girder was supported by a concrete pier or abutment. All
subsequent discussions of the bridge will refer to the bridge that carried eastbound traffic,
particularly the three eastern spans, which were the only ones tested. A detailed description
of the test structure, the experimental procedures described below and all results obtained
can be found in reference [38].

4. AMBIENT VIBRATION TEST PROCEDURE

Integral-circuit piezoelectric accelerometers were used for the vibration measurements.
Twenty-six 2·54 cm square (1 in square) aluminum mounting blocks were dental cemented
to the inside web of the plate girder at mid-height and at the axial locations shown
in Figure 3. Within a span the three blocks were equally spaced in the axial
direction. Accelerometers were mounted on the blocks with a 10–32 stud, in the global Y
direction shown in Figure 3. These accelerometers had a nominal sensitivity of 1 V/g, a
specified frequency range of 1–2000 Hz, and an amplitude range of 24 g. Two-conductor
20 gauge cable ranging from 21·3 m to 88·9 m (70 ft to 291 ft) connected the accelerometers

Figure 3. The accelerometer locations.
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Figure 4. A typical time-history measured at location S-7 during ambient vibration tests.

to the data acquisition system. The data acquisition system used in the modal tests
consisted of a computer workstation, which controlled 29 input modules, and a signal
processing module. The workstation was also the platform for a commercial data
acquisition/signal analysis/modal analysis software package. The input modules provide
power to the accelerometers and performed analog to digital conversion of the
accelerometer voltage–time histories. The signal processing module performed the needed
fast Fourier transform calculations. A 3500 watt AC generator was used to power this
system in the field.

During the tests, traffic had been directed on to the two northern lanes. Significantly
different traffic flow could be observed at various times when data was being
acquired. During morning and afternoon rush hours the traffic would slow down
considerably, thus producing lower level excitations in the bridge. At midday the trucks
crossing the bridge at high speeds would cause higher level excitations that would often
over range some of the data acquisition channels. A final ambient vibration test was
conducted just prior to the subsequent forced vibration tests, when all traffic had been
removed from the eastbound bridge. For this test the ambient vibration source
was provided by the traffic on the adjacent new eastbound bridge and the existing
westbound bridge that was transmitted through the ground to the piers and abutment.
During all ambient tests, no attempt was made to characterize the input to the
bridge. Although the assumption that the traffic on a bridge produces a white noise
input was not verified; the random weights of vehicles, as discussed by Turner and
Pretlove [39], their random arrival times, the random nature of the vehicles’ suspension
systems, and the randomly distributed road surface irregularities suggest that this
assumption is valid.

T 1

Ambient vibration test summary

Test Frequency Number of Reference
designation range (Hz) averages channel* Time

t1tr 0–6·25 100 S-2 9:27 a.m.–12:17 p.m.
t10tr 0–6·25 35 S-6 2:42–3:30 p.m.
t15tr† 0–12·5 15 S-2 4:45–5:00 p.m.

* See Figure 3.
† This test was performed immediately before forced vibration tests when traffic had been routed to new spans.

Ambient excitation was caused by traffic on the adjacent spans.
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The data acquisition system that was used did not estimate cross-correlation
functions directly. Instead, CPS were determined from measured acceleration response
data and these functions were inverse Fourier transformed to obtain the needed
cross-correlation functions. The CPS were calculated with an additional accelerometer
located at either S-2 or S-6 in Figure 3, specified as the reference channel. Sampling
parameters were specified that calculated the CPS from 64 s or 32 s time windows
discretized with 1024 samples. A typical time history measured at location S-7 is shown
in Figure 4. On the basis of these sampling parameters, the CPS were calculated for
frequency ranges of 0–6·25 Hz or 0–12·5 Hz. Multiple averages were used to minimize
random errors when calculating the CPS. Frequency resolutions, Df, of 0·015625 Hz and
0·03125 Hz were obtained for the 0–6·25 Hz CPS and 0–12·5 Hz CPS, respect-
ively. A Hanning window was applied to the time signals to minimize leakage and AC
coupling was specified to minimize DC offsets. A test of the AC coupling filter showed
that the filter did not attenuate the signal at frequencies above 2 Hz, and it was concluded
that the AC coupling filter would not adversely affect the data in the frequency ranges of
interest. A dynamic range of 3·98 V was specified and time samples that overloaded this
range were rejected. With these sampling parameters and the overload reject specified, data
acquisition occurred over time periods ranging up to almost three hours. The different
ambient vibration tests that were conducted are summarized in Table 1.

5. FORCED VIBRATION TEST PROCEDURE

When traffic was removed from the bridge and the final ambient tests had been complete,
forced vibration tests were performed. Eastbound traffic had been transferred to a new

Figure 5. The shaker used in forced vibration tests: 1 ft=0·3048 m; 1 in=2·54 cm.
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bridge just south of the one being tested. The westbound traffic continued on the
original westbound bridge. These forced vibration tests were conducted so that results
from a conventional experimental modal analysis of the bridge could be compared
with the ambient vibration test results. In this context, experimental modal analysis
refers to the procedure whereby a measured force excitation is applied to a structure and
the structure’s acceleration response is measured at discrete locations that are
representative of the structure’s motion. Both the excitation and the response time histories
are transformed into the frequency domain so that modal parameters (resonant
frequencies, mode shapes and modal damping) can be determined by curve fitting a
Laplace domain representation of the FRF to the measured frequency domain data [1].
The data acquisition system, mounting blocks, cabling, accelerometers and generator used
for the forced vibration tests were identical to those used for the ambient vibration tests.
An additional input module was used to monitor the force input.

A hydraulic shaker, shown in Figure 5, was used to generate a measured force input.
The shaker consisted of a 96·5 kN (21 700 lb) reaction mass supported by three air springs
resting on top of drums filled with sand. A 9·79 kN (2200 lb) hydraulic actuator bolted
under the center of the mass and anchored to the top of the bridge deck provided the input
force to the bridge. The amplifier gain was controlled to provide an approximately 8·90 kN
(2000 lb) peak random force input over a frequency range of 2–12 Hz. An accelerometer
mounted on the reaction mass was used to measure the force input to the bridge. This
indirect force measurement gives the total force transferred to the bridge through the
drums as well as the actuator. The shaker was located over the south plate girder directly
above point S-3 as shown in Figure 3. A detailed description of the shaker can be found
in reference [40].

Sampling parameters were specified so that responses with frequency content in the
range of 0–12·5 Hz could be measured. All computed frequency response functions were
based on 30 averages with no overlap. A Hanning window was applied to all time samples
used in these calculations. A typical 32 s response time history measured at location S-7
is shown in Figure 6 for comparison with the time history measured during the ambient
vibration tests; Figure 4.

6. RESULTS

A typical cross-power spectrum between two response measurements (reference location
S-2 and response location N-7) measured during the ambient vibration test designated t1tr

Figure 6. A typical time-history measured at location S-7 during forced vibration tests.
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Figure 7. The cross-power spectrum between ambient vibration measurements made at locations S-2 and N-7.
The portion of the spectrum between the dashed lines labelled A was analyzed to determine the dynamic
properties associated with the first mode.

is shown in Figure 7. The inverse Fourier transform of this measurement yields the
cross-correlation function, shown in Figure 8. In practice, a particular peak in the
cross-power spectrum was isolated, as shown in Figure 7, by zero-padding the spectrum
on either side of the peak. The inverse transform of this modified spectrum yields the
cross-correlation function, shown in Figure 9, which was curve-fitted to obtain the
resonant frequencies and modal damping values. Each peak in the cross-power spectrum
was analyzed in this manner. In Figures 8 and 9 is shown the circular nature of the
cross-correlation function as discussed in reference [4]. In practice, only the decaying half
of the function shown in Figure 9 was curve-fitted. When closely spaced modes are present,

Figure 8. The cross-correlation function obtained from the inverse Fourier transform of the CPS shown in
Figure 7.
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Figure 9. The cross-correlation function corresponding to the isolated portion of the spectrum shown in
Figure 7.

the curve-fitting procedure attempts to fit multiple modes to the portion of the
spectrum being analyzed. The cross-correlation functions are based on averaged
spectra generated from windowed time-histories. The resonant frequencies and
modal damping values determined when the ambient vibration parameter identification
method was applied to the cross-correlation functions are summarized in Table 2. Both
parameters were calculated in a global manner using a complex exponential curve-fitting
method; that is, each measured CPS was inversely transformed and the resulting
cross-correlation functions were used to estimate the modal parameters. The mean value
of these parameters, obtained from individual analysis of the 26 measurements, was then
calculated. These mean values appear in Table 2. A detailed discussion of the curve-fitting
procedure is given in reference [38]. Also shown in Table 2 are the resonant
frequencies and modal damping values determined by conventional modal analysis using
a measured input. A rational-fraction polynomial global curve-fitting algorithm in a
commercial modal analysis software package [41] was used to fit the analytical models
to the measured FRF data and extract resonant frequencies, mode shapes and
modal damping values. The magnitude of a typical measured FRF that was
analyzed, corresponding to the measurement made at location N-7 in Figure 3, is shown
in Figure 10.

The mode shapes for the first six modes, identified from amplitude and phase
information contained in the CPS measured during the ambient vibration test designated
t1tr, are shown in Figure 11. The corresponding modes identified from the conventional
measured input modal analysis are shown in Figure 12. A modal assurance criterion
(MAC), sometimes referred to as a modal correlation coefficient [1], was calculated to
quantify the correlation between mode shapes measured during different tests. The MAC
makes use of the orthogonality properties of the mode shapes to compare modes from
different tests. If the modes are identical, a scalar value of one is calculated by the MAC.
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Figure 10. The magnitude of the frequency response function measured at location N-7 during the forced
vibration test.

If the modes are orthogonal or otherwise dissimilar, a value of zero is calculated. The MAC
that compares modes r and s has the form

MAC (r, s)=
b spL=1

(fr
L)(fs

L)*b
2

0 s
p

L=1

(fr
L)(fr

L)*10 s
p

L=1

(fs
L)(fs

L)*1
, (13)

Figure 11. The first six modes identified during ambient vibration tests from relative amplitude and phase
information contained in the CPS. (a)–(f) correspond to modes 1–6, respectively.
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Figure 12. The first six modes identified during the conventional measured forced input vibration test. (a)–(f)
correspond to modes 1–6, respectively.

where (fr
L) and (fs

L) are elements of p-dimension mode shape vectors, and the asterisk
denotes the complex conjugate. Ewins [1] points out that, in practice, correlated modes
will yield a value greater than 0·9 and uncorrelated modes will yield a value less than 0·05.

The matrix in Table 3 shows the MACs that compared modes identified from data
measured during the ambient test designated t1tr with modes identified during the forced
vibration test. This matrix shows that the six modes identified from the ambient vibration
data are, in fact, closely correlated with the modes measured during the forced vibration
test. A similar correlation was obtained for modes identified from the other ambient
vibration tests and modes identified during the forced vibration test. Modes 4 and 5, which
are closely spaced in frequency and which were difficult to identify during several ambient
vibration tests, did not always show good correlation with the modes determined during
the forced vibration tests.

T 3

Modal assurance criteria: mode shapes identified from ambient vibration test t1tr compared
with mode shapes identified from forced vibration test

Mode/test 1/Forced 2/Forced 3/Forced 4/Forced 5/Forced 6/Forced

1/t1tr 0·989 0·008 0·000 0·004 0·002 0·001
2/t1tr 0·004 0·985 0·000 0·001 0·001 0·004
3/t1tr 0·002 0·003 0·984 0·000 0·009 0·001
4/t1tr 0·005 0·002 0·001 0·901 0·102 0·009
5/t1tr 0·000 0·001 0·005 0·066 0·917 0·005
6/t1tr 0·001 0·003 0·002 0·004 0·004 0·984



   15

7. SUMMARY AND CONCLUSIONS

In this study, the cross-correlation function between two response measurements made
on an ambiently excited structure was shown to have the form of decaying sinusoids,
similar to the system’s impulse response function. The significance of this derivation is that
standard time domain curve-fitting procedures such as the complex exponential method,
which are typically applied to impulse response functions, can now be applied to the
cross-correlation functions to estimate the resonant frequencies and modal damping of the
structure. The advantage of this system identification method over standard procedures
that identify resonant frequencies from peaks in the power spectrum and damping from
the width of the power spectrum is the ability to identify closely spaced modes and their
associated damping. Also, implementation of this method can be accomplished with
algorithms that are typically available in most commercial signal analysis and experimental
modal analysis software packages. However, these software packages typically estimate the
cross-power spectrum and then inverse Fourier transform this function to obtain the
cross-correlation function. Therefore, this method will be subject to window-dependent
resolution bias errors, as discussed in reference [37]. The effects of such error sources were
not investigated in this study. Random errors were minimized by averaging numerous
measurements when estimating the cross-power spectra.

The derivation presented in this paper, which shows that the impulse response function
and the cross-correlation function are of similar form, was based on the assumption that
the ambient vibration source is a white noise random process. Although the assumption
that the traffic on a bridge produces a white noise input was not verified; the random
weights of vehicles, as discussed by Turner and Pretlove [39], their random arrival times,
the random nature of the vehicles’ suspension systems, and the randomly distributed road
surface irregularities suggest that this assumption is valid.

The ambient vibration system identification method was applied to an in-service
highway bridge where traffic provided the vibration source. Subsequently, after traffic had
been re-routed, the same bridge was tested with conventional measured-input force
vibration procedures. The results from these tests allow the following conclusions to be
made:

1. Ambient vibration from traffic provides an adequate source of input for identifying
the dynamic properties of the bridge. The results obtained with the method developed in
this study were repeatable (resonant frequency values measured with traffic on the bridge
did not vary by more than 2%) and were independent of the selected reference
measurement.

2. The method presented in this paper was able to discern closely spaced modes (0·07 Hz
or approximately 2·24 Df apart) such as modes 4 and 5, and this method identified the
associated modal damping values for these modes. These modes showed coupling through
the off-diagonal MAC values. However, both the ambient system identification method
and the conventional measured-input system identification method were able to identify
the dynamic properties associated with these modes.

3. All measured modes were lightly damped, with modal damping values ranging from
0·38% to 1·58%. These modes can be accurately approximated as real modes. The phase
angles of the CPS associated with the resonant frequency were typically close to either 0
or 180 degrees. An average modal damping value of 1·01% was obtained from the three
ambient tests. The forced vibration test yielded an average modal damping value of 1·12%,
a 9·82% difference from the ambient results. The identified values are consistent with those
obtained by other investigators for similar bridges as summarized in references [28, 31, 42].

4. During test t15tr, when traffic was not on the bridge, and during the forced vibration
test, slightly higher frequencies were measured for each mode as compared to the results
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from tests when traffic was on the bridge. These higher frequencies are attributed to the
reduced mass of the system that resulted when traffic was removed from the bridge. Within
the limits of the traffic flows that were monitored, a comparison of the results from tests
when traffic on the bridge was used as the excitation source (tests t1tr and t10tr) and results
from test t15tr quantifies the variations in the dynamic properties that can result from
varying traffic loads. Resonant frequencies for the first six modes were found to be from
1·44% to 4·37% higher when there was no traffic on the bridge. The average modal
damping value was 0·86% without traffic, as compared to 1·08% when traffic was present.
Although not quantified, visual inspection of the animated mode shapes revealed that they
were not affected by the removal of traffic.

5. Background sources of ambient vibration from traffic on the adjacent bridges were
of sufficient magnitude that the dynamic properties of the structure could be determined
by measuring the response to this excitation source as was done in test t15tr.

This experimental verification of the accuracy of the ambient vibration system
identification method implies that the proposed method can be used accurately to assess
the dynamic properties of bridges and other structures in a non-intrusive manner.
Currently, there are numerous studies under way to develop methods for monitoring the
structural integrity of bridges by examining changes in their dynamic properties [43]. One
goal of this research is to develop remotely monitored, in situ damage assessment systems
for the bridge. If damage identification procedures that examine changes in dynamic
properties are to become part of an in situ, remote monitoring system, then from a practical
viewpoint they will have to work with dynamic properties identified from ambient
excitation of the bridge. The ambient system identification method reported in this study
is amenable to such an in situ monitoring system.
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